Попередня Наступна

ПОТОЧНИЙ НОМЕР

№1' 2022p.

КАРДІОЛОГІЯ
DOI (https://doi.org/10.37436/2308-5274-2022-1-2)

РЕЛАКСИН−2 − ПЕРСПЕКТИВНИЙ БІОМАРКЕР КАРДІОМЕТАБОЛІЧНИХ ЗАХВОРЮВАНЬ

О. А. ПАНКОВА
Харківська медична академія післядипломної освіти

Досліджено роль релаксину−2 у регуляції метаболізму, зокрема вуглеводного та жирового обмінів. Визначено механізми його антиоксидантної дії та діагностичний потенціал у визначенні кардіометаболічних захворювань.

Ключові слова: серцево−судинні захворювання, гіпертонічна хвороба, цукровий діабет 2−го типу, релаксин−2, інсулінорезистентність, метаболізм, антиоксидантна дія.

RELAXIN−2 AS A PROMISING BIOMARKER OF CARDIOMETABOLIC DISEASES

O. A. PANKOVA

The role of relaxin−2 in the metabolism regulation, in particular in carbohydrate and fat metabolism, has been studied. The mechanisms of its antioxidant action and diagnostic potential in determining the cardiometabolic diseases have been determined.

Key words: cardiovascular diseases, hypertension, type 2 Diabetes mellitus, relaxin−2, insulin resistance, metabolism, antioxidant action.




REFERENCES


1. Global Health Estimates 2020: Deaths by Cause, Age, Sex, by Country and by Region, 2000−2019. World Health Organization. Geneva, Switzerland. 2020. URL: https://www.who.int/data/gho/data/themes/mortality−and−global−health−estimates/ghe−leading−causes−of−death.

2. Hisaw F. L. The Corpus Luteum Hormone. I. Experimental relaxation of the pelvic ligament of the guinea pig. Physiological Zoology. 1929. Vol. 2, № 1. P. 59−79. doi: https://doi.org/10.1086/physzool.2.1.30151063

3. Relaxin family peptides and their receptors / R. A. D. Bathgate et al. Physiol. Rev. 2013. Vol. 93, № 1. P. 405−480. doi: https://doi.org/10.1152/physrev.00001.2012

4. Relaxin−2 in Cardiometabolic Diseases: Mechanisms of Action and Future Perspectives / S. Feijóo−Bandín et al. Front. Physiol. 2017. Vol. 8, № 599. doi: https://doi.org/10.3389/fphys.2017.00599

5. Hisaw F. L. Experimental relaxation of the pubic ligament of the guinea pig. Proc. Soc. Exp. Biol. Med. 1926. Vol. 23. P. 661−663. doi: https://doi.org/10.3181/00379727−23−3107

6. Relaxin and Extracellular Matrix Remodeling: Mechanisms and Signaling Pathways / Ng H. H. et al. Mol. Cell. Endocrinol. 2019. Vol. 487. P. 59−65. doi: https://doi.org/10.1016/j.mce.2019.01.015

7. Intravenous Recombinant Human Relaxin in Compensated Heart Failure: A Safety, Tolerability, and Pharmacodynamic Trial / T. Dschietzig et al. J. of Cardiac Failure. 2009. Vol. 15, Iss. 3. P. 182−190. doi: https://doi.org/10.1016/j.cardfail.2009.01.008

8. Relaxin for the treatment of patients with acute heart failure (Pre−RELAX−AHF): a multicentre, randomised, placebo−controlled, parallel−group, dose−finding phase IIb study / J. R. Teerlink et al. Lancet. 2009. Vol. 373, Iss. 9673. P. 1429−1439. doi: https://doi.org/10.1016/S0140−6736(09)60622−X

9. Multicenter, randomized, double−blinded, placebo−controlled phase II Study of Serelaxin in Japanese Patients with Acute Heart Failure / N. Sato et al. Circ. J. 2015. Vol. 79, Iss. 6. P. 1237−1247. doi: https://doi.org/10.1253/circj.CJ−15−0227

10. Serelaxin, recombinant human relaxin−2, for treatment of acute heart failure (RELAX−AHF): a randomised, placebo−controlled trial / J. R. Teerlink et al. Lancet. 2013. Vol. 381, Iss. 9860. P. 29−39. doi: http://dx.doi.org/10.1016/S0140−6736(12)61855−8

11. Effects of Serelaxin in Patients with Acute Heart Failure / M. Metra et al. N. Engl. J. Med. 2019. Vol. 381. P. 716−726. doi: https://doi.org/10.1056/NEJMoa1801291

12. Dschietzig T. B. Relaxin−2 for heart failure with preserved ejection fraction (HFpEF): Rationale for future clinical trials. Mol. Cell. Endocrinol. 2019. Vol. 487. P. 54−58. doi: https://doi.org/10.1016/j.mce.2019.01.013

13. Relaxin confers cytotrophoblast protection from hypoxia−reoxygenation injury through the phosphatidylinositol 3−kinase−Akt/protein kinase B cell survival pathway / O. Ogunleye et al. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2017. Vol. 312, № 4. P. R559−R568. doi: https://doi.org/10.1152/ajpregu.00306.2016

14. GLUT4 Storage Vesicles: Specialized Organelles for Regulated Trafficking / D. T. Li et al. Yale J. Biol. Med. 2019. Vol. 92, Iss. 3. P. 453−470.

15. Relaxin Treatment Reverses Insulin Resistance in Mice Fed a High−Fat Diet / J. S. Bonner et al. Diabetes. 2013. Vol. 62, Iss. 9. P. 3251−3260. doi: https://doi.org/10.2337/db13−0033

16. Relaxin activates AMPK−AKT signaling and increases glucose uptake by cultured cardiomyocytes / A. Aragon−Herrera et al. Endocrine. 2018. Vol. 60, Iss. 1. P. 103−111. doi: https://doi.org/10.1007/s12020−018−1534−3

17. Abnormal relaxin secretion during pregnancy in women with type 1 diabetes / P. G. Whittaker et al. Exp. Biol. and Med. 2003. Vol. 228, Iss. 1. P. 33−40. doi: https://doi.org/10.1177/153537020322800104

18. Plasma levels of relaxin−2 are higher and correlated to C−peptide levels in early gestational diabetes mellitus / Y. A. Lopez et al. Endocrine. 2017. Vol. 57. P. 545−547. doi: https://doi.org/10.1007/s12020−017−1354−x

19. Relaxin expression correlates significantly with serum fibrinogen variation in response to antidiabetic treatment in women with type 2 diabetes mellitus / T. Schondorf et al. Gynecol. Endocrinol. 2007. Vol. 23, Iss. 6. P. 356−360. doi: https://doi.org/10.1080/09513590701447998

20. Assessment of relaxin levels in pregnant women with gestational diabetes mellitus / I. Zaman et al. Endocrine Abstracts. 16th European Congress of Endocrinology; (Poland, Wroclaw 2014). Wroclaw 2014. Vol. 35. P. 377. doi: https://doi.org/10.1530/endoabs.35.P377

21. The plasma levels of relaxin−2 and relaxin−3 in patients with diabetes / X. Zhang et al. Clin. Biochem. 2013. Vol. 46, Iss. 16−17. P. 1713−1716. doi: https://doi.org/10.1016/j.clinbiochem.2013.08.007

22. Szepietowska B., Gorska M., Szelachowska M. Plasma relaxin concentration is related to beta−cell function and insulin sensitivity in women with type 2 diabetes mellitus. Diabetes research and clinical practice. 2008. Vol. 79, Iss. 3. P. e1−e3. doi: https://doi.org/10.1016/j.diabres.2007.10.017

23. Decreased Serum Relaxin−2 Is Correlated with Impaired Islet β−Cell Function in Patients with Unstable Angina and Abnormal Glucose Metabolism / X. Gao, H. Li, P. Wang, H. Chen. Int. Heart J. 2018. Vol. 59, Iss. 2. P. 272−278. doi: https://doi.org/10.1536/ihj.17−082

24. Relaxin improves multiple markers of wound healing and ameliorates the disturbed healing pattern of genetically diabetic mice / A. Bitto et al. Clin. Sci. (Lond.). 2013. Vol. 125, Iss. 12. P. 575−585. doi: https://doi.org/10.1042/CS20130105

25. Effects of recombinant human relaxin upon proliferation of cardiac fibroblast and synthesis of collagen under high glucose condition / P. Wang et al. J. Endocrinol. Invest. 2009. Vol. 32. P. 242−247. doi: https://doi.org/10.1007/BF03346460

26. Serelaxin treatment reverses vascular dysfunction and left ventricular hypertrophy in a mouse model of Type 1 diabetes / H. H. Ng et al. Scientific Reports. 2017. Vol. 7, № 39604. doi: https://doi.org/10.1038/srep39604

27. Relaxin−2 does not ameliorate nephropathy in an experimental model of Type−1 diabetes / T. B. Dschietzig et al. Kidney Blood Press Res. 2015. Vol. 40, № 1. P. 77−88. doi: https://doi.org/10.1159/000368484

28. The Anti−fibrotic Hormone Relaxin is not Reno−protective, Despite Being Active, in an Experimental Model of Type 1 Diabetes / S. E. Wong et al. Protein & Peptide Letters. 2013. Vol. 20, Iss. 9. P. 1029−1038. doi: https://doi.org/10.2174/0929866511320090009

29. Serelaxin (recombinant human relaxin−2) treatment affects the endogenous synthesis of long chain poly−unsaturated fatty acids and induces substantial alterations of lipidome and metabolome profiles in rat cardiac tissue / A. Aragón−Herrera et al. Pharmacol. Research. 2019. Vol. 144. P. 51−65. doi: https://doi.org/10.1016/j.phrs.2019.04.009

30. Hu Y., Hu F. B., Manson J. E. Marine omega−3 supplementation and cardiovascular disease: an updated meta−analysis of 13 randomized controlled trials involving 127 477 participants. J. Am. Heart Assoc. 2019. Vol. 8, № 19. Art. e013543. doi: https://doi.org/10.1161/JAHA.119.013543

31. Blood n−3 fatty acid levels and total and cause−specific mortality from 17 prospective studies / W. S. Harris et al. Nat. Commun. 2021. Vol. 12. Art. 2329. doi: https://doi.org/10.1038/s41467−021−22370−2

32. Relaxin has beneficial effects on liver lipidome and metabolic enzymes / A. Aragón−Herrera et al. FASEB J. 2021. Vol. 35, Iss. 7. Art. e21737. doi: https://doi.org/10.1096/fj.202002620RR

33. Antiatherosclerotic effects of serelaxin in apolipoprotein E−deficient mice / V. Tiyerili et al. Atherosclerosis. 2016. Vol. 251. P. 430−437. doi: https://doi.org/10.1016/j.atherosclerosis.2016.06.008

34. Secreted proteins and genes in fetal and neonatal pig adipose tissue and stromal−vascular cells / G. J. Hausman et al. J. Anim. Sci. 2006. Vol. 84, Iss. 7. P. 1666−1681. doi: https://doi.org/10.2527/jas.2005−539

35. Central and peripheral administration of human relaxin−2 to adult male rats inhibits food intake / B. M. C. McGowan et al. Diabetes. Obes. Metab. 2010. Vol. 12, Iss. 12. P. 1090−1096. doi: https://doi.org/10.1111/j.1463−1326.2010.01302.x

36. Sex−Specific Effects of Chronic Administration of Relaxin−3 on Food Intake, Body Weight and the Hypothalamic−Pituitary−Gonadal Axis in Rats / J. Calvez, C. Ávila, G. Guèvremont, E. Timofeeva. J. Neuroendocrinol. 2016. Vol. 28, Iss. 12. doi: https://doi.org/10.1111/jne.12439

37. The expression of relaxin−3 in adipose tissue and its effects on adipogenesis / H. Yamamoto et al. Protein Pept. Lett. 2014. Vol. 21, Iss. 6. P. 517−522. doi: https://doi.org/10.2174/0929866520666131217101424

38. Glutamine: Metabolism and Immune Function, Supplementation and Clinical Translation / V. Cruzat et al. Nutrients. 2018. Vol. 10, Iss. 11. Art. 1564. doi: https://doi.org/10.3390/nu10111564

39. Borst P. The malate−aspartate shuttle (Borst cycle): How it started and developed into a major metabolic pathway. IUBMB Life. 2020. Vol. 72, Iss. 11. P. 2241−2259. doi: https://doi.org/10.1002/iub.2367

40. Pavlova N. N., Hui Sh., Ghergurovich J. M. As Extracellular Glutamine Levels Decline, Asparagine Becomes an Essential Amino Acid. Cell. Metab. 2018. Vol. 27, Iss. 2. P. 428−438.e5. doi: https://doi.org/10.1016/j.cmet.2017.12.006

41. Asparagine plays a critical role in regulating cellular adaptation to glutamine depletion / J. Zhang et al. Mol. Cell. 2014. Vol. 56, Iss. 2. P. 205−218. doi: https://doi.org/10.1016/j.molcel.2014.08.018

42. Human Relaxin−2 (Serelaxin) Attenuates Oxidative Stress in Cardiac Muscle Cells Exposed In Vitro to Hypoxia−Reoxygenation. Evidence for the Involvement of Reduced Glutathione Up−Regulation / S. Nistri, C. Fiorillo, M. Becatti, D. Bani. Antioxidants. 2020. Vol. 9, Iss. 9. P. 774. doi: https://doi.org/10.3390/antiox9090774

43. Relaxin protects cardiomyocytes against hypoxia−induced damage in in−vitro conditions: Involvement of Nrf2/HO−1 signaling pathway / A. A. Waza et al. Life Sci. 2018. Vol. 213. P. 25−31. doi: https://doi.org/10.1016/j.lfs.2018.08.059

44. Relaxin improves TNF−alpha−induced endothelial dysfunction: role of glucocorticoid receptor and phosphatidylinositol 3−kinase signalling / T. Dschietzig et al. Cardiovasc. Res. 2012. Vol. 95, Iss. 1. P. 97−107. doi: https://doi.org/10.1093/cvr/cvs149

45. Relaxin ameliorates high glucose−induced cardiomyocyte hypertrophy and apoptosis via the Notch1 pathway / X. Wei et al. Exp. Med. 2018. Vol. 15, Iss. 1. P. 691−698. doi: https://doi.org/10.3892/etm.2017.5448



Завантажити статтю в форматі PDF (170 KB)
Наверх