

ПОТОЧНИЙ НОМЕР
№1' 2022p.
КАРДІОЛОГІЯDOI (https://doi.org/10.37436/2308-5274-2022-1-2)
РЕЛАКСИН−2 − ПЕРСПЕКТИВНИЙ БІОМАРКЕР КАРДІОМЕТАБОЛІЧНИХ ЗАХВОРЮВАНЬ
Досліджено роль релаксину−2 у регуляції метаболізму, зокрема вуглеводного та жирового обмінів. Визначено механізми його антиоксидантної дії та діагностичний потенціал у визначенні кардіометаболічних захворювань.
Ключові слова: серцево−судинні захворювання, гіпертонічна хвороба, цукровий діабет 2−го типу, релаксин−2, інсулінорезистентність, метаболізм, антиоксидантна дія.
RELAXIN−2 AS A PROMISING BIOMARKER OF CARDIOMETABOLIC DISEASES
The role of relaxin−2 in the metabolism regulation, in particular in carbohydrate and fat metabolism, has been studied. The mechanisms of its antioxidant action and diagnostic potential in determining the cardiometabolic diseases have been determined.
Key words: cardiovascular diseases, hypertension, type 2 Diabetes mellitus, relaxin−2, insulin resistance, metabolism, antioxidant action.
REFERENCES
1. Global Health Estimates 2020: Deaths by Cause, Age, Sex, by Country and by Region, 2000−2019. World Health Organization. Geneva, Switzerland. 2020. URL: https://www.who.int/data/gho/data/themes/mortality−and−global−health−estimates/ghe−leading−causes−of−death.
2. Hisaw F. L. The Corpus Luteum Hormone. I. Experimental relaxation of the pelvic ligament of the guinea pig. Physiological Zoology. 1929. Vol. 2, № 1. P. 59−79. doi: https://doi.org/10.1086/physzool.2.1.30151063
3. Relaxin family peptides and their receptors / R. A. D. Bathgate et al. Physiol. Rev. 2013. Vol. 93, № 1. P. 405−480. doi: https://doi.org/10.1152/physrev.00001.2012
4. Relaxin−2 in Cardiometabolic Diseases: Mechanisms of Action and Future Perspectives / S. Feijóo−Bandín et al. Front. Physiol. 2017. Vol. 8, № 599. doi: https://doi.org/10.3389/fphys.2017.00599
5. Hisaw F. L. Experimental relaxation of the pubic ligament of the guinea pig. Proc. Soc. Exp. Biol. Med. 1926. Vol. 23. P. 661−663. doi: https://doi.org/10.3181/00379727−23−3107
6. Relaxin and Extracellular Matrix Remodeling: Mechanisms and Signaling Pathways / Ng H. H. et al. Mol. Cell. Endocrinol. 2019. Vol. 487. P. 59−65. doi: https://doi.org/10.1016/j.mce.2019.01.015
7. Intravenous Recombinant Human Relaxin in Compensated Heart Failure: A Safety, Tolerability, and Pharmacodynamic Trial / T. Dschietzig et al. J. of Cardiac Failure. 2009. Vol. 15, Iss. 3. P. 182−190. doi: https://doi.org/10.1016/j.cardfail.2009.01.008
8. Relaxin for the treatment of patients with acute heart failure (Pre−RELAX−AHF): a multicentre, randomised, placebo−controlled, parallel−group, dose−finding phase IIb study / J. R. Teerlink et al. Lancet. 2009. Vol. 373, Iss. 9673. P. 1429−1439. doi: https://doi.org/10.1016/S0140−6736(09)60622−X
9. Multicenter, randomized, double−blinded, placebo−controlled phase II Study of Serelaxin in Japanese Patients with Acute Heart Failure / N. Sato et al. Circ. J. 2015. Vol. 79, Iss. 6. P. 1237−1247. doi: https://doi.org/10.1253/circj.CJ−15−0227
10. Serelaxin, recombinant human relaxin−2, for treatment of acute heart failure (RELAX−AHF): a randomised, placebo−controlled trial / J. R. Teerlink et al. Lancet. 2013. Vol. 381, Iss. 9860. P. 29−39. doi: http://dx.doi.org/10.1016/S0140−6736(12)61855−8
11. Effects of Serelaxin in Patients with Acute Heart Failure / M. Metra et al. N. Engl. J. Med. 2019. Vol. 381. P. 716−726. doi: https://doi.org/10.1056/NEJMoa1801291
12. Dschietzig T. B. Relaxin−2 for heart failure with preserved ejection fraction (HFpEF): Rationale for future clinical trials. Mol. Cell. Endocrinol. 2019. Vol. 487. P. 54−58. doi: https://doi.org/10.1016/j.mce.2019.01.013
13. Relaxin confers cytotrophoblast protection from hypoxia−reoxygenation injury through the phosphatidylinositol 3−kinase−Akt/protein kinase B cell survival pathway / O. Ogunleye et al. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2017. Vol. 312, № 4. P. R559−R568. doi: https://doi.org/10.1152/ajpregu.00306.2016
14. GLUT4 Storage Vesicles: Specialized Organelles for Regulated Trafficking / D. T. Li et al. Yale J. Biol. Med. 2019. Vol. 92, Iss. 3. P. 453−470.
15. Relaxin Treatment Reverses Insulin Resistance in Mice Fed a High−Fat Diet / J. S. Bonner et al. Diabetes. 2013. Vol. 62, Iss. 9. P. 3251−3260. doi: https://doi.org/10.2337/db13−0033
16. Relaxin activates AMPK−AKT signaling and increases glucose uptake by cultured cardiomyocytes / A. Aragon−Herrera et al. Endocrine. 2018. Vol. 60, Iss. 1. P. 103−111. doi: https://doi.org/10.1007/s12020−018−1534−3
17. Abnormal relaxin secretion during pregnancy in women with type 1 diabetes / P. G. Whittaker et al. Exp. Biol. and Med. 2003. Vol. 228, Iss. 1. P. 33−40. doi: https://doi.org/10.1177/153537020322800104
18. Plasma levels of relaxin−2 are higher and correlated to C−peptide levels in early gestational diabetes mellitus / Y. A. Lopez et al. Endocrine. 2017. Vol. 57. P. 545−547. doi: https://doi.org/10.1007/s12020−017−1354−x
19. Relaxin expression correlates significantly with serum fibrinogen variation in response to antidiabetic treatment in women with type 2 diabetes mellitus / T. Schondorf et al. Gynecol. Endocrinol. 2007. Vol. 23, Iss. 6. P. 356−360. doi: https://doi.org/10.1080/09513590701447998
20. Assessment of relaxin levels in pregnant women with gestational diabetes mellitus / I. Zaman et al. Endocrine Abstracts. 16th European Congress of Endocrinology; (Poland, Wroclaw 2014). Wroclaw 2014. Vol. 35. P. 377. doi: https://doi.org/10.1530/endoabs.35.P377
21. The plasma levels of relaxin−2 and relaxin−3 in patients with diabetes / X. Zhang et al. Clin. Biochem. 2013. Vol. 46, Iss. 16−17. P. 1713−1716. doi: https://doi.org/10.1016/j.clinbiochem.2013.08.007
22. Szepietowska B., Gorska M., Szelachowska M. Plasma relaxin concentration is related to beta−cell function and insulin sensitivity in women with type 2 diabetes mellitus. Diabetes research and clinical practice. 2008. Vol. 79, Iss. 3. P. e1−e3. doi: https://doi.org/10.1016/j.diabres.2007.10.017
23. Decreased Serum Relaxin−2 Is Correlated with Impaired Islet β−Cell Function in Patients with Unstable Angina and Abnormal Glucose Metabolism / X. Gao, H. Li, P. Wang, H. Chen. Int. Heart J. 2018. Vol. 59, Iss. 2. P. 272−278. doi: https://doi.org/10.1536/ihj.17−082
24. Relaxin improves multiple markers of wound healing and ameliorates the disturbed healing pattern of genetically diabetic mice / A. Bitto et al. Clin. Sci. (Lond.). 2013. Vol. 125, Iss. 12. P. 575−585. doi: https://doi.org/10.1042/CS20130105
25. Effects of recombinant human relaxin upon proliferation of cardiac fibroblast and synthesis of collagen under high glucose condition / P. Wang et al. J. Endocrinol. Invest. 2009. Vol. 32. P. 242−247. doi: https://doi.org/10.1007/BF03346460
26. Serelaxin treatment reverses vascular dysfunction and left ventricular hypertrophy in a mouse model of Type 1 diabetes / H. H. Ng et al. Scientific Reports. 2017. Vol. 7, № 39604. doi: https://doi.org/10.1038/srep39604
27. Relaxin−2 does not ameliorate nephropathy in an experimental model of Type−1 diabetes / T. B. Dschietzig et al. Kidney Blood Press Res. 2015. Vol. 40, № 1. P. 77−88. doi: https://doi.org/10.1159/000368484
28. The Anti−fibrotic Hormone Relaxin is not Reno−protective, Despite Being Active, in an Experimental Model of Type 1 Diabetes / S. E. Wong et al. Protein & Peptide Letters. 2013. Vol. 20, Iss. 9. P. 1029−1038. doi: https://doi.org/10.2174/0929866511320090009
29. Serelaxin (recombinant human relaxin−2) treatment affects the endogenous synthesis of long chain poly−unsaturated fatty acids and induces substantial alterations of lipidome and metabolome profiles in rat cardiac tissue / A. Aragón−Herrera et al. Pharmacol. Research. 2019. Vol. 144. P. 51−65. doi: https://doi.org/10.1016/j.phrs.2019.04.009
30. Hu Y., Hu F. B., Manson J. E. Marine omega−3 supplementation and cardiovascular disease: an updated meta−analysis of 13 randomized controlled trials involving 127 477 participants. J. Am. Heart Assoc. 2019. Vol. 8, № 19. Art. e013543. doi: https://doi.org/10.1161/JAHA.119.013543
31. Blood n−3 fatty acid levels and total and cause−specific mortality from 17 prospective studies / W. S. Harris et al. Nat. Commun. 2021. Vol. 12. Art. 2329. doi: https://doi.org/10.1038/s41467−021−22370−2
32. Relaxin has beneficial effects on liver lipidome and metabolic enzymes / A. Aragón−Herrera et al. FASEB J. 2021. Vol. 35, Iss. 7. Art. e21737. doi: https://doi.org/10.1096/fj.202002620RR
33. Antiatherosclerotic effects of serelaxin in apolipoprotein E−deficient mice / V. Tiyerili et al. Atherosclerosis. 2016. Vol. 251. P. 430−437. doi: https://doi.org/10.1016/j.atherosclerosis.2016.06.008
34. Secreted proteins and genes in fetal and neonatal pig adipose tissue and stromal−vascular cells / G. J. Hausman et al. J. Anim. Sci. 2006. Vol. 84, Iss. 7. P. 1666−1681. doi: https://doi.org/10.2527/jas.2005−539
35. Central and peripheral administration of human relaxin−2 to adult male rats inhibits food intake / B. M. C. McGowan et al. Diabetes. Obes. Metab. 2010. Vol. 12, Iss. 12. P. 1090−1096. doi: https://doi.org/10.1111/j.1463−1326.2010.01302.x
36. Sex−Specific Effects of Chronic Administration of Relaxin−3 on Food Intake, Body Weight and the Hypothalamic−Pituitary−Gonadal Axis in Rats / J. Calvez, C. Ávila, G. Guèvremont, E. Timofeeva. J. Neuroendocrinol. 2016. Vol. 28, Iss. 12. doi: https://doi.org/10.1111/jne.12439
37. The expression of relaxin−3 in adipose tissue and its effects on adipogenesis / H. Yamamoto et al. Protein Pept. Lett. 2014. Vol. 21, Iss. 6. P. 517−522. doi: https://doi.org/10.2174/0929866520666131217101424
38. Glutamine: Metabolism and Immune Function, Supplementation and Clinical Translation / V. Cruzat et al. Nutrients. 2018. Vol. 10, Iss. 11. Art. 1564. doi: https://doi.org/10.3390/nu10111564
39. Borst P. The malate−aspartate shuttle (Borst cycle): How it started and developed into a major metabolic pathway. IUBMB Life. 2020. Vol. 72, Iss. 11. P. 2241−2259. doi: https://doi.org/10.1002/iub.2367
40. Pavlova N. N., Hui Sh., Ghergurovich J. M. As Extracellular Glutamine Levels Decline, Asparagine Becomes an Essential Amino Acid. Cell. Metab. 2018. Vol. 27, Iss. 2. P. 428−438.e5. doi: https://doi.org/10.1016/j.cmet.2017.12.006
41. Asparagine plays a critical role in regulating cellular adaptation to glutamine depletion / J. Zhang et al. Mol. Cell. 2014. Vol. 56, Iss. 2. P. 205−218. doi: https://doi.org/10.1016/j.molcel.2014.08.018
42. Human Relaxin−2 (Serelaxin) Attenuates Oxidative Stress in Cardiac Muscle Cells Exposed In Vitro to Hypoxia−Reoxygenation. Evidence for the Involvement of Reduced Glutathione Up−Regulation / S. Nistri, C. Fiorillo, M. Becatti, D. Bani. Antioxidants. 2020. Vol. 9, Iss. 9. P. 774. doi: https://doi.org/10.3390/antiox9090774
43. Relaxin protects cardiomyocytes against hypoxia−induced damage in in−vitro conditions: Involvement of Nrf2/HO−1 signaling pathway / A. A. Waza et al. Life Sci. 2018. Vol. 213. P. 25−31. doi: https://doi.org/10.1016/j.lfs.2018.08.059
44. Relaxin improves TNF−alpha−induced endothelial dysfunction: role of glucocorticoid receptor and phosphatidylinositol 3−kinase signalling / T. Dschietzig et al. Cardiovasc. Res. 2012. Vol. 95, Iss. 1. P. 97−107. doi: https://doi.org/10.1093/cvr/cvs149
45. Relaxin ameliorates high glucose−induced cardiomyocyte hypertrophy and apoptosis via the Notch1 pathway / X. Wei et al. Exp. Med. 2018. Vol. 15, Iss. 1. P. 691−698. doi: https://doi.org/10.3892/etm.2017.5448
