Previous Next

ARCHIVE

№4' 2020

NEUROLOGY

International Medical Journal, Vol. 26., Iss. 4, 2020, P. 55−59.


DOI (https://doi.org/10.37436/2308-5274-2020-4-10)

CLINICAL AND PATHOGENETIC FEATURES OF MILD TRAUMATIC BRAIN INJURY DISTANT PERIOD


Irina Anatolevna Hryhorova, Teslenko O. O., Tykhonova L. V.

Kharkiv National Medical University, Ukraine

Plastic and energetic reorganization of brain after its traumatic injury lasts for many years, and impaired adaptive neuroplasticity can lead to progressive development. In the long term, even with a minor injury, the organic neurological symptoms are mitigated and autonomic and psychopathological disorders come to the fore, which are the main cause of social and occupational maladaptation of patients. To identify and analyze the clinical and pathogenetic features of the long−term period of mild traumatic brain injury, 100 patients aged 20−60 years who underwent it 1−5 years ago were examined. Patients underwent clinical−neurological, neuropsychological and biochemical studies. The reparative capacity of brain was assessed by determining the content of neurotrophic factors in the serum: brain−derived neurotrophic factor (BDNF), nerve growth factor (beta−NGF) and protein−promoter of apoptosis Bcl−2 by enzyme−linked immunosorbent assay. The results of the study confirm the idea that mild traumatic brain injury most often affects the mid−stem structures of the brain, which play a leading role in ensuring the human body adaptation. Clinically, this was manifested by asthenic, autonomic and neurocognitive disorders, which is a reflection of persistent neuronal dysfunction. Decreased BDNF expression and increased beta−NGF in the long term may be a marker of neuronal dysfunction, a persistent disorder of adaptive neuroplasticity that is closely associated with emotional and neurocognitive disorders. The level of Bcl−2 remains consistently high, significantly higher than control values, even with prolonging duration of the post−traumatic period. This feature is likely to be of regulatory character as an apoptosis inhibitor.

Key words: mild traumatic brain injury, pathogenesis, clinic, diagnosis, neuroplasticity.


REFERENCES


1. Klinicheskaya epidemiologiya cherepno−mozgovoi travmy: monogr. / E. G. Pedachenko, S. Ya. Semisalov, V. N. El'skii, A. M. Kardash. Donetsk: Apeks, 2002. 156 s.

2. Kvasnіts'kii M. V. Dіagnostika ta nadannya pershoї medichnoї dopomogi pri cherepno−mozkovіi travmі // Meditsina neotlozhnykh sostoyanii. 2013. № 3 (50). C. 34−38.

3. Pedachenko Є. G. Cherepno−mozkova travma: suchasnі printsipi nevіdkladnoї dopomogi, standarti dіagnostiki ta lіkuvannya // Ostrye i neotlozhnye sostoyaniya v praktike vracha. 2010. № 1 (20). S. 5−8.

4. Shlapak І. P., Burchins'kii V. G., Pilipenko M. M. Epіdemіologіchne doslіdzhennya smertnostі vіd ChMT v Ukraїnі // Ukr. neirokhіrurgіchnii zhurn. 2005. № 3. S. 14−16.

5. Cherepno−mozgovaya travma / A. V. Boiko, E. V. Kostenko, T. T. Batysheva, K. A. Zaitsev // Consillium Medicum. 2007. № 9 (8). S. 5−10.

6. Osetrov A. S. Klinicheskie i psikhofiziologicheskie kharakteristiki posledstvii cherepno−mozgovoi travmy: avtoref. dis. … d−ra med. nauk. M., 1989. 40 s.

7. Rakhova R. K., Rakovlev N. A. Kliniko−psikhovegetativnye i metabolicheskie narusheniya u bol'nykh s posledstviyami legkoi cherepno−mozgovoi travmy // Neiroimmunologiya. 2003. T. 1, № 2. S. 124−125.

8. Likhterman L. B. Sotryasenie golovnogo mozga: taktika lecheniya i iskhody. M.: IP "T.M. Andreeva", 2008. 158 s.

9. Vtorichnye faktory povrezhdenii golovnogo mozga pri cherepno−mozgovoi travme / V. V. Krylov i dr. // Ross. med. zhurn. 2009. № 3. S. 23−28.

10. Reed A. R., Welsh D. G. Secondary injury in traumatic brain injury patients − a prospective study // S Afr Med J. 2012. № 92. P. 221−224.

11. Taupin P. Adult neurogenesis, neuroinflammation and therapeutic potential of adult neural stem cells // Int. J. Med. Sci. 2008. № 53. R. 127−132. doi: https://doi.org/10.7150/ijms.5.127

12. Persistent cognitive dysfunction after traumatic brain injury: A dopamine hypothesis / J. W. Bales, A. K. Wagner, A. E. Kline, C. E. Dixon // J. Neuroscience and Biobehavioral Reviews. 2009. № 33. R. 981−1003. doi: 10.1016/ j.neubiorev.2009.03.011

13. Zhivolupov S. A., Samartsev I. N. Neiroplastichnost': patofiziologicheskie aspekty i vozmozhnosti terapevticheskoi modulyatsii // Zhurn. nevrologii i psikhiatrii im. S. S. Korsakova. 2009. № 109 (4). S. 75−78.

14. Attention and memory dysfunction after traumatic brain injury: cholinergic mechanisms, sensory gating, and a hypothesis for further investigation / D. Arciniegas et al. // J. Brain Inj. 1999. № 13. R. 1−13. doi: 10.1080/026990599121827

15. Zaitsev O. S. Psikhopatologiya tyazheloi cherepno−mozgovoi travmy. M.: MEDpress−inform. 2011. 336 s.

16. Gomez−Pinilla F. A., Vaynman S. "Deficient environment" in prenatal life may compromise systems important for cognitive function by affecting BDNF in the hippocampus // Exp. Neurol. 2005. № 2 (192). R. 235−243. doi: https://doi.org/10.1016/j.expneurol.2004.12.001

17. Conditional reduction of adult neurogenesis impairs bidirectional hippocampal synaptic plasticity / F. Massa et al. // Proc. Natl. Acad. Sci USA. 2011. № 108 (16). R. 6644−6649. doi: https://doi.org/10.1073/pnas.1105938108

18. Holder S. Cognitive impairment in traumatic brain injury cases // Head and brain injuries. 2008. № 2. R. 34−36.

19. NGF content in the cerebral cortex of non−demented patients with amyloid−plaques and in symptomatic Alzheimer's disease / R. Hellweg et al. // Int. J. Dev. Neurosci. 1998. Vol. 16 (7−8). P. 787−794. doi: https://doi.org/10.1016/s0736−5748(98)00088−4

20. Differential regulation of mRNAs for nerve growth factor, brain derived neu rotrophic factor, and neurotrophin 3 in the adult rat brain following cerebral ischemia and hypoglycemic coma / O. Lindvall et al. // Proc. Natl. Acad. Sci. USA. 1992. Vol. 89. P. 648−652. doi: https://doi.org/10.1073/pnas.89.2.648

21. NGF, DCX, and NSE upregulation correlates with severity and outcome of head trauma in children / A. Chiaretti et al. // Neurology. 2009. Vol. 72. P. 609−616. doi: https://doi.org/10.1212/01.wnl.0000342462.51073.06

22. The duality of the inflammatory response to traumatic brain injury / P. Lenzlinger et al. // Mol. Neurobiol. 2001. Vol. 24. P. 169−181.

23. Lockshin R. Programmed cell death. Activation of lysis by a mechanism involving the synthesis of protein // J. Insect. Physiol. 1969. Vol. 15. P. 1505−1516. doi: https://doi.org/10.1016/0022−1910(69)90172−3

24. Clinical trials in head injury / R. Narayan et al. // J. Neurotrauma. 2002. Vol. 19. P. 503−557.

25. Increases in bcl−2 protein in cerebrospinal fluid and evidence for programmed cell death in infants and children after severe traumatic brain injury / R. Clark et al. // J. Pediatr. 2000. Vol. 137. P. 197−204. doi: https://doi.org/10.1067/mpd.2000.106903

Go on Top